Novel synthetic inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase activity that inhibit tumor cell proliferation and are structurally unrelated to existing statins.

نویسندگان

  • Jean-Pierre H Perchellet
  • Elisabeth M Perchellet
  • Kyle R Crow
  • Keith R Buszek
  • Neil Brown
  • Sampathkumar Ellappan
  • Ge Gao
  • Diheng Luo
  • Machiko Minatoya
  • Gerald H Lushington
چکیده

Pilot-scale libraries of eight-membered medium ring lactams (MRLs) and related tricyclic compounds (either seven-membered lactams, thiolactams or amines) were screened for their ability to inhibit the catalytic activity of human recombinant 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase in vitro. A dozen of the synthetic compounds mimic the inhibition of purified HMG-CoA reductase activity caused by pravastatin, fluvastatin and sodium salts of lovastatin, mevastatin and simvastatin in this cell-free assay, suggesting direct interaction with the rate-limiting enzyme of cholesterol biosynthesis. Moreover, several MRLs inhibit the metabolic activity of L1210 tumor cells in vitro to a greater degree than fluvastatin, lovastatin, mevastatin and simvastatin, whereas pravastatin is inactive. Although the correlation between the concentration-dependent inhibitions of HMG-CoA reductase activity over 10 min in the cell-free assay and L1210 tumor cell proliferation over 4 days in culture is unclear, some bioactive MRLs elicit interesting combinations of statin-like (IC50: 7.4-8.0 microM) and anti-tumor (IC50: 1.4-2.3 microM) activities. The HMG-CoA reductase-inhibiting activities of pravastatin and an MRL persist in the presence of increasing concentrations of NADPH. But increasing concentrations of HMG-CoA block the HMG-CoA reductase-inhibiting activity of pravastatin without altering that of an MRL, suggesting that MRLs and existing statins may have different mechanisms of enzyme interaction and inhibition. When tested together, suboptimal concentrations of synthetic MRLs and existing statins have additive inhibitory effects on HMG-CoA reductase activity. Preliminary molecular docking studies with MRL-based inhibitors indicate that these ligands fit sterically well into the HMG-CoA reductase statin-binding receptor model and, in contrast to mevastatin, may occupy a narrow channel housing the pyridinium moiety on NADP+.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statins: A New Hope for Cancer Therapy

3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase is the key enzyme in cholesterol synthesis. Statins are used in treatment of hypercholesterolemia as inhibitors of HMG-CoA reductase. Cancer cells overexpress HMG-CoA reductase enzyme. Recent studies have demonstrated that statins may inhibit the proliferation of human breast cancer cells. Statins have proangiogenic effects in low therapeutic c...

متن کامل

Statins: 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitors demonstrate anti-atherosclerotic character due to their antioxidant capacity.

Atherosclerosis is a chronic inflammatory disease of multiple etiologies. It is associated with the accumulation of oxidized lipids in arterial lesions leading to coronary heart disease. 3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (commonly known as statins) are widely used in cardiovascular disease prevention to lower the cholesterol. The antioxidant activity of HMG-Co...

متن کامل

Non-lipid-related effects of statins.

The beneficial effects of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) on coronary events have generally been attributed to their hypocholesterolaemic properties. However, as mevalonate and other intermediates of cholesterol synthesis (isoprenoids) are necessary for cell proliferation and other important cell functions, effects other than cholesterol reduction ...

متن کامل

MYC phosphorylation, activation, and tumorigenic potential in hepatocellular carcinoma are regulated by HMG-CoA reductase.

MYC is a potential target for many cancers but is not amenable to existing pharmacologic approaches. Inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase) by statins has shown potential efficacy against a number of cancers. Here, we show that inhibition of HMG-CoA reductase by atorvastatin (AT) blocks both MYC phosphorylation and activation, suppressing tumor initiat...

متن کامل

Nanoscale Proteomic Analysis of Oncoproteins in Hematopoietic Cancers

MYC is a potential target for many cancers but is not amenable to existing pharmacologic approaches.Inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase) by statins has shownpotential efficacy against a number of cancers. Here, we show that inhibition of HMG-CoA reductase byatorvastatin (AT) blocks both MYC phosphorylation and activation, suppressing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of molecular medicine

دوره 24 5  شماره 

صفحات  -

تاریخ انتشار 2009